Biomedical Engineering

Research groups

Imagen Ingeniería Biomédica

Many rare diseases cause chronic health problems or are even life-threatening. The impact on the quality of life of affected patients, of whom many are children, is significant. To date, a limited but increasing number of so-called orphan drugs (drugs for rare diseases) are reaching patients.

However, the majority of rare diseases are still without any effective treatment. The development of novel human systems for drug discovery therefore represents a major public health priority. Microfluidic technology-based “Organs-on-a-chip” represents a powerful tool for investigating rare disease mechanisms and testing new drug and treatment due to their ability to mimic tailored micro-environment architecture inspired by organ-level functions in vivo.

https://cistem-project.com/

Projects

Translational cardioselective RNAi therapies and predictive heart-on-chip to tackle cardiac clinical challenges

Agencia

To arrive at a device that is as miniaturised as possible, that allows help to be summoned at the touch of a button and that can always be carried by the elderly person.
DIH

In silico framework to improve the personalized prediction of progression and outcomes in thoracic and abdominal aortic aneurysms based on personalized clinical and mechanical biomarkers

To develop a computational-experimental framework to improve the prediction of the initiation, progression and final outcome of the pathology.
MIMECO

Optimising and automating the process of freezing ovarian tissue to preserve fertility in girls with cancer

To finance primarily very specific actions that improve the quality of life of children with cancer and their families

Computational biomechanics and bioengineering 3D printing to develop a personalized regenerative biological ventricular assist device to provide lasting functional support to damaged hearts

3D printing to restore a damaged heart
Logo H2020

To validate technically and clinically novel methods to understand, and give support to tremor diagnosis.
Agencia Estatal de Investigación

Physics-informed world models for the development of cognitive digital twins

MIMECO

By developing biological ventricular assist devices (BioVADs), BRAV3 will bring a quantum leap in regenerative medicine and its translation towards the clinic, as well as impact the development of novel medical technologies whilst greatly advancing our knowledge on human heart development.
BRAVE

Computational modeling of cell culture in dynamically adaptive multilayer microenvironment charged with drug-delivery microcapsules

Develop computational tools for the predictive analysis of key factors in the evolution of multiple myeloma and cartilage, and spinal cell growth and more...
MIMECO

The main objective is to develop a comprehensive methodology for the correction and treatment of mandibular asymmetries in children.

Integrated design with artificial intelligence and engineering of bioprinted multi-organoids in chPrincipal investigator for tumour diagnostics and therapy

Digital transformation of clinical practice by using patient-specific cardiac digital twins for risk prediction and therapy optimization

Construction of patient-specific digital twins of the human heart by statistical and mechanistic in silico modeling, fed with extensive clinical data collected and processed digitally
Agencia Estatal de Investigación

Customised DNA-based nanocarriers to boost heart healing

DNABEATS aims to bring advanced materials to regenerate injured myocardium.
Agencia Estatal de Investigación

Extracting the Human Motor Null Space from Muscles - A new framework to measure human neural activity

ECHOES will capitalize on recent breakthroughs in decoding the spinal outputs to muscles to develop a theoretical and experimental framework to unveil the 'motor null space' in human muscles.
Horizonte Europa , ERC

Predict and prevent foot pathologies related to hallux limitus and flat feet

Predict and prevent foot pathologies related to hallux limitus and flat feet
MIMECO

Multiscale modeling of the interaction between the immune system and glioblastoma evolution

Agencia

In vitro characterization and in vitro/in vivo simulation of the effect of hypoxia and drug dosis in glioblastoma growth

The in vitro and in silico study of glioblastoma multiforme (GBM) tumor is proposed.
logo_ministerio_universidades

Individual and Collective Migration of Immune Cellular Systems

ICoMICS aims to develop a novel virtual simulation platform to investigate how therapeutic immune cells (TICs) detect, move and interact with cancer cells and the tumour microenvironment.
ERC , Horizon Europe

multI-discipliNary, multi-Sectoral and multi-national trainIng network on Digital biomarkErs for supraventricular arrHythmia charactErizAtion and Risk assessmenT

Establishing a multi-disciplinary network to tackle the design and the early-phase validation of digital biomarkers, specifically targeting the diagnosis of supraventricular arrhythmias (SVAs) and their associated potential for adverse risk assessment, via the joint combination of signal processing, artificial intelligence and non-clinical devices.
Horizonte Europa , MSCA

In silico models for tendinomuscular injuries analysis using artificial intelligence techniques

To continue characterizing the in vitro mechanical properties of tissues present in the ankle joint of a mouse model and extend the study to those involved in the shoulder's rotator cuff. In the case of muscles, the active behavior will also be analyzed by inducing contraction through an external electrical signal.
MIMECO

Methods for Stroke Monitoring and Diagnosing based on BCG

To develop novel, non-invasive methods for detecting cardiac and non-cardiac disease in stroke patients using the ballistocardiogram (BCG) signal, allowing for patient monitoring without transfer to clinical settings
Horizonte Europa , MSCA

COMPUTER-AIDED EFFECTIVE FRACTURE RISK STRATIFICATION OF PATIENTS WITH VERTEBRAL METASTASES FOR PERSONALISED TREATMENT THROUGH ROBUST COMPUTATIONAL MODELS VALIDATED IN CLINICAL SETTINGS

METASTRA will propose new guidelines for the stratification and management of metastatic patients. METASTRA approach is expected to cut the uncertain diagnoses from the current 60% down to 20% of cases. This will reduce patient suffering, and allow cutting expenditure by 2.4B€/year.
Horizonte Europa

Deepening knowledge and improving the Quality of Life in Parkinson Disease through Smart Insoles

To develop intelligent insoles that will allow, by means of force and inertial sensors and advanced algorithms, to monitor the patient's gait and provide personalised information on the patient's evolution.
MCIN/AEI y FEDER

Optimisation of personalised treatments for femoral fractures using digital twins and machine learning

PELVIc Floor Evaluation live TRACKing – Real-time prediction of perineal trauma

To develop the first-ever solution to predict pelvic floor tearing
Horizonte Europa , EIC

Microelectronic control architectures for smart power electronic converters based on wide-gap semiconductors

Ministerio ciencia

Gemelo digital para la detección, el diagnóstico asistidos del cáncer de próstata y la simulación de los efectos y la eficacia de diferentes tratamientos oncológicos

Desarrollar una herramienta computacional para crear un gemelo digital 4D: un modelo virtual diseñado para reflejar con precisión toda la próstata de un paciente y de su posible tumor
Agencia

Implementation and validation of a closed-loop neural interface to entrain brain rhythms and reduce motor symptoms in Parkinson's Disease

To develop a non-invasive neuromodulation platform to apply closed-loop stimulation protocols synchronized with brain oscillations decoded from the periphery with muscle recordings
Horizonte Europa , MSCA

ECG morphology clusters for sudden cardiac death risk stratification in coronary artery disease using genetics and human-based computational models

Integrate the information from the genetic architecture of the distinct ECG morphological clusters to understand the mechanisms underlying SCD risk.
Ministerio de Ciencia e Innovación y cofinanciado por la Unión Europea (FEDER)

Unlocking data content of Organ-On-Chips

To develop groundbreaking Organ-on-Chips (OOC) technologies to mitigate the challenges posed by use of animals in drug development and testing. Direct use of human cells is a real game changer, bridging the gender gap and allowing personalized medicine.
EU , KDT

VAScularised Tumour Organoids on a chip with human placenta vessels as a preclinical model for anticancer therapies

VASTO Proof of Concept aims to develop and test an innovative microfluidic-based platform, which allows to evaluate the efficacy of different cell immunotherapy strategies against solid tumours.
Horizonte Europa , ERC